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The current availability of cheap computer power enables the construction of QSARs from modern
ab initio quantum chemical data. Multivariate models for three classes of compounds are developed
by means of the quantum topological molecular similarity (QTMS) tool, which incorporates
descriptors originating from the “Atoms in Molecules” (AIM) theory. Correlations obtained
outperform the Hammett and other traditional parameters. The advantage of QTMS over
semiempirical and empirical descriptors is demonstrated by the following r2/q2 values: 0.920/0.891
(acids), 0.974/0.953 (anilines), and 0.952/0.884 (phenols).

Introduction

Understanding the effect of substituents on the mo-
lecular property pKa is of interest to the pharmaceutical
industry in order to calculate pharmokinetic properties
and more generally to the chemical industry in compu-
tating the environmental fate or hazard of compounds.
Concerning the estimation of pharmokinetic properties,
the pKa can affect protonation states of weak acids and
bases at a physiological pH level. This change in proto-
nation state will thus influence the rate at which a
compound diffuses across membranes and other physical
barriers, such as the blood-brain barrier. The environ-
mental perspective involves degradation of chemicals
such as pesticides, which is again determined by their
pKa, as well as the hazard associated with the ability of
carboxylic acids to cause skin corrosion in the workplace.

A number of studies reported a correlation between pKa

and various pharmaceutical parameters.1,2 A number of
methods3 including titrimetry4 target the calculation of
pKa’s. There are clear benefits to a technique that predicts
dissociation constants without the need for “wet” experi-
ments. Efficient methods have been implemented in
software packages such as ACD Labs,5 pKa predictor, and
pKcalc.6 However, due to their fragment based approach

they are inadequate when fragments present in a mol-
ecule under study are absent in the database. In other
words, pKas can only be reliably predicted for compounds
very similar to those in the training set. In this study
we have chosen to model the pKa of three well-known
classes of compounds: carboxylic acids, anilines and
phenols. Previous attempts at modeling the pKa of
carboxylic acids used semiempirical methods.7 In their
work7 Tehan and co-workers rejected the use of ab initio
methods as computationally expensive for drug-sized
molecules in a large database of molecules of diverse
structure and complexity. Their study incorporated about
eight times more data than ours but, as made clear in
Section 2, we estimate that a modest Linux PC cluster
of about a dozen nodes would require no more than a few
days of computing time. Although the processing time
on modern day computers is not a significant barrier, the
reliability and true predictive capability of ab initio
methods off-sets these computational demands.

Tehan and co-workers produced a quantitative struc-
ture-activity relationship (QSAR) for a set of a set of
141 aliphatic carboxylic acids yielding an r2 value of 0.80
and a q2 value of 0.80. Gruber and Buss8 developed a
three-term equation, with an r2 of 0.80, using HOMO
energies. Citra9 also reported a three-term equation with
an r2 of 0.84 for 56 acids. Quantum mechanical analyses
assisting the prediction of the dissociation constant for

* To whom correspondence should be addressed. Tel: +44-161-
2004511. Fax: +44-161-2004559.

(1) Jayasekhar, P.; Kasture, A. V. Bull. Chim. Far. 1999, 138, 489-
492.

(2) Jones, T.; Taylor, G. Proc.-Eur. Congr. Biopharm. Pharmacoki-
net. 1987, 2, 181-190.

(3) Perrin, D. D.; Dempsey, B.; Serjean, E. P. pKa Prediction for
Organic Acids and Bases; Chapman and Hall: London, 1981.

(4) Albert, A.; Serjeant, E. P. The Determination of Ionisation
Constants, 2nd ed.; 1971.

(5) ACD/Labs version 3; ACD Labs: Toronto, ON, Canada.
(6) pKalc; Comudrug International: San Francisco, CA.
(7) Tehan, B. G.; Lloyd, E. J.; Wong, M. G.; Pitt, W. R.; Montana, J.

G.; Manallack, D. T.; Gancia, E. Quant. Struct.-Act. Relat. 2002, 21,
457-471.

(8) Gruber, C.; Buss, V. Chemosphere 1989, 19, 1595-1609.
(9) Citra, M. J. Chemosphere 1999, 38, 191-206.

© Copyright 2004 by the American Chemical Society

VOLUME 69, NUMBER 2 JANUARY 23, 2004

10.1021/jo0347415 CCC: $27.50 © 2004 American Chemical Society
J. Org. Chem. 2004, 69, 233-241 233Published on Web 09/06/2003



aliphatic carboxylic acids used self-similarity measures
producing a model with a r2 of 0.915 for a set of 10 acids10

but no measure of predictability (cross-validated r2 or q2)
was reported.

Moving across to 3D QSAR, comparative molecular
field analysis (CoMFA)11 has also been applied to a small
set of acids,12 introducing issues of molecular alignment.
Impressive results were obtained by Adam13 who, as in
our study, incorporated the theory of “Atoms in Mol-
ecules” (AIM),14-19 using the energy of the dissociating
proton in solution as the only descriptor and obtained
an r2 of 0.983 for a set of 19 acids (no q2 was stated). As
demonstrated at the end of this section, QTMS has a
wider applicability than the prediction of pKa’s. Moreover,
we show there is no need for AIM’s rather compute
intensive atomic properties.

The carboxylic acid data set of the present study was
acquired from Eriksson et al.20 Recently, Gross et al.21

investigated the applicability of ab initio (quantum
chemical) parameters as alternatives to the Hammett
constant in modeling the pKa of anilines and phenols. A
set of 36 anilines was used in constructing possible one-
parameter regression descriptors for pKa that included
the natural charge of amino nitrogen, relative proton-
transfer enthalpy, minimum molecular surface local
ionization energies, and molecular electrostatic potential
minima; results were comparable with the Hammett
constants. This ab inito approach was extended to model
the pKa for a set of 19 phenols via the examination of
several quantum chemical parameters: the natural
charges on the phenolic hydrogen and the phenoxide
oxygen, the phenoxide HOMO energy, and the relative
proton-transfer energy. This study showed that EHOMO

is superior to the Hammett constants in describing the
substituent-induced pKa effects. The aforementioned
study8 of Gruber and Buss also incorporated a set of 99
phenols yielding a commendable r2 of 0.94 (without
reporting q2).

The rapid growth of QSAR studies illustrates the
progress in this area of modern (bio)chemistry and
demonstrates the abundance of data in an age of mass
information. Coupled with increased computer processing
power, the development of algorithms delivered the
status quo where routine generation of a plethora of
descriptors requires a matter of minutes. Such descrip-
tors, as in the present study, are often of quantum
chemical origin and provide more accurate descriptions
of electronic effects than empirical methods. Moreover,
in most cases, they do not necessarily suffer from the

approximate nature of the method or neglect of solvation
effects assuming relative values are used.22 This leads
to a situation where there are many “flavors” of descrip-
tors. For example, bond rotation energy barrier, bond
angle, and natural atomic charge coupled with empirical
descriptors such as the Hammett σ and Taft σ* constants
attempt to model one property, such as electronic effects.
Furthermore, such linear free energy relationships (LFER)
have been criticized for lacking solid scientific basis in
their empirical approach.23 This state of affairs leads us
to quantum topological molecular similarity (QTMS),24

which is based on the increasingly popular25,26 theory of
AIM. This theory, which is deeply rooted in quantum
mechanics,27 can be used to extract chemical insight from
modern ab initio wave functions.

AIM has stimulated the use of new descriptors in
chemometric analyses, such as in StrucQT,28,29 the pre-
diction of hydrogen bond basicity30 and hydrogen bond
donor capacity31 or of physicochemical properties of amino
acids, polycyclic aromatic hydrocarbons and the opiates,32

and Oripavine PEO, enkephalins, and morphine.33 In our
group, QTMS delivered excellent QSARs of environmen-
tal, biological, and industrial interest. Examples include
the prediction of toxicity of polychlorinated dibenzo-p-
dioxins (PCDDs),34 of toxicity and biodegradability of
para-substituted phenols, and 13C NMR chemical shifts
in para- and meta-substituted benzonitriles,35 of anti-
bacterial activity of nitrofuran derivatives, of antitumor
activity of (E)-1-phenyl-but-3-en-ones,36 of mutagenicity,37

of furanones and triazenes, of the corticosteroid binding
binding of the classical steroid dataset,38 of hydrolysis
rate constants of polar esters,39 and of σp, σm, σI, and σp

0

parameters of mono-40 and polysubstituted benzoic acids,
phenylacetic acids, and bicyclocarboxylic acids.34 In sum-
mary, QTMS is so reliable in predicting activities and
properties dominated by electronic effects, such that
when it fails for a given data set one can safely conclude
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that electronic effects are not important. Note that we
use the expression “electronic effects” in the strict QSAR
sense, that is, to distinguish them from steric effects and
log P. The term “electronic effects” should not be confused
with the quantum mechanical electron density.

2. Method and Computational Details

Details on QTMS can be found in ref 41, but here we
reiterate salient features. QTMS consists of three stages: the
generation of geometry-optimized bond lengths and wave
functions, computation of quantum topological properties, and
a chemometric analysis.

Using the program GAUSSIAN98,42 geometries were opti-
mized and single-point energies were obtained at four levels
of theory, denoted by A, B, C, and E, for consistency with our
previous and future publications. Level A corresponds to the
semiempirical model AM1,43 which yields reasonable bond
lengths for nonesoteric (hence already parametrized) molecules
but fails to provide an electron density that can be analyzed
topologically. All higher levels (B, C, and E) used in this work
generate the “single point” wave function at the optimized
geometry. Levels B and C correspond to HF/3-21G(d)44 and
HF/6-31G(d), respectively. The most expensive level, level E,
corresponds to B3LYP/6-311+G(2d,p), where electron correla-
tion is modeled by a well-known hybrid density functional45

of applied density functional theory (DFT).46

A local version of the program MORPHY9847 delivers the
four topological properties that we use to describe the bonds
in each molecule. Loosely speaking, AIM defines a bond critical
point (BCP) as a point at which the gradient of the electron
density vanishes, lying roughly between two bonded nuclei.
Properties evaluated at the BCP characterize the correspond-
ing bond and are selected as topological descriptors. In this
study, the properties are the electron density, F, the Laplacian
of the electron density, ∇2F, the ellipticity ε ,19 and a type of
local kinetic energy density, K. Of course, when computed for
a Kohn-Sham-based density functional (e.g., B3LYP), K refers
only to a noninteracting reference system. Although not strictly
a BCP property, we added the equilibrium bond length re to
the set of four descriptors (for each bond). Thus, a QTMS
descriptor matrix was constructed for each of the acid, aniline,
and phenol data sets with 40[compounds] × 3[bonds], 36 ×
14, and 19 × 13 entries, respectively. BCP properties and
equilibrium bond lengths were used separately to produce
models, as made clear in Tables 1-6 in the Results and
Discussion. Although this is not a fundamental restriction of
QTMS, we work here with a common skeleton. This is the

largest fragment common to all molecules allowing for different
atomic numbers. For example, the anilines are described by
14 bonds because they all contain the two bonds of NH2, the
six aromatic CC bonds, and six C-X bonds where X is either
hydrogen, nitrogen, or a substituent Y. If Y is Cl in one
substituted aniline and F in another, the C-Cl and C-F bonds
correspond to each other in the descriptor matrixes of the
respective molecules. Clearly, the atomic numbers of Cl and
F are different, which is allowed by the common skeleton
requirement. However, if the substituent were methoxy, OCH3,
then the bonds of the methyl group would be unmatched in a
comparison with, say, fluoroaniline, and hence, the methyl
group would not be included in the descriptor matrix.

Models were constructed using the partial least squares
(PLS)48 method, as implemented in the program SIMCA-P.49

Note that for level A we can only consider the optimized bond
lengths as descriptors. The PLS technique has been designed
to handle thousands of descriptors (so-called X variables),
which can be noisy and highly correlated (virtually collinear).
Although we do not involve as many X variables as a typical
CoMFA analysis, we benefit from the advantages PLS offers.
This is so because the generally nonlinear dependence50 of the
descriptors F, ∇2F, ε, and K on re could become linear. Also, we
could interpret the small deviations between the values of the
five descriptors generated at the current levels of theory and
of the exact wave function as “noise”.

The quality of the PLS regression is assessed by the
correlation coefficient r2 and the cross-validated correlation
coefficient,51 q2, based on leaving out one-seventh of the data.
A data randomization test guards against “correlation by
chance” by monitoring the deterioration of the model (mea-
sured by r2 and q2) as the Y variables are randomly permuted.
We adopted the default SIMCA-P cutoff values beyond which
the model ceases to be valid. We used the so-called variable
importance in the projection (VIP)52 to detect the “active
center” of the compound. Descriptors (or X variables) with a
VIP value smaller than one can be rejected as unimportant,
whereas those with the highest VIP values constitute the
“active center”. An optional step is to compress the number of
descriptor variables for each bond by principal component
analysis (PCA) using the program SPSS.53 PLS is carried out
again, this time on the extracted PCs rather than on the “raw”
variables. The introduction of PCs allows us to isolate descrip-
tors corresponding to a specific bond in the common-skeleton
across the data set. In doing so we are not only correlating
descriptors across an entire molecule to the pKa, but we also
illustrate the usefulness of QTMS in isolating the fragment-
(s) of a molecule that are important to the physical property.
Gaining “added value” from the model is considered an
important outcome in building QSAR.54 However, we prefer
not to provide explicit QSAR equations, which customarily link
the observed activity to the descriptors in 2D QSAR studies.
Indeed, we do not generate global but rather local descriptors
(such as in CoMFA) proportional to the number of bonds in
the common skeleton. This means for example that such an
equation for the anilines would contain 56 terms.

Finally, it is important to give an idea of the CPU times
required for a typical QTMS analysis, realizing that the
generation of optimized wave function is the rate-limiting step.
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On a moderately priced PC (dual AMD Athlon MP1900+, 1
GB DDR RAM) the maximum time to compute a wave function
at HF/3-21G(d) level (level B) for compounds of the acid data
set was 15 CPU minutes, this level of theory producing the
best results. Our dataset of 40 carboxylic acids thus required
less than 10 CPU hours, or 1 h on a small Linux cluster of 10
PCs. The most expensive set however, that of the 36 anilines
at level E, cost about 15 CPU hours on a cluster on 10 PCs.

3. Results and Discussion

3.1. Carboxylic Acids. Table 1 shows the measured
pKa values for the 40 carboxylic acids obtained from a
set devised by Eriksson.55 Iodoacetic acid was not in-
cluded since basis sets for iodine were not readily
available. The deprotonation of an aliphatic carboxylic
acid (R is an alkyl group) can be summarized by the
following scheme:

The numbering scheme used to identify the location
of descriptors important to the PLS model is shown in
Figure 1. We are now in a position to map information
obtained from one set of bond descriptors to the corre-
sponding set in another molecule. Since only the (OdC)-
O-H fragment is common to all molecules we restrict
the descriptors to the three bonds it contains.

In the PLS data matrix we now have 40 observations
(i.e., measured pKa values) and 12 descriptors, four
descriptors obtained for each of the three bonds in the
carboxyl group at levels B, C, and E. A summary of the
PLS analyses at the four levels of theory is shown in
Table 2. Two QSAR models were developed at each level,
using BCP descriptors in one and equilibrium bond
lengths in the other. The BCP models always outperform
the bond length model in terms of r2 but not always in
terms of predictivity or q2. The analysis at the more
computationally expensive level E does not provide
significantly better results, but it is encouraging that
descriptors obtained at level B perform better than those

(55) Eriksson, L. A.; Berglind, R.; Sjostrom, M. Chemom. Intell. Lab.
Syst. 1994, 23, 235-245.

TABLE 1. Substituted Carboxylic Acids and Their Observed and Predicted pKa Values Obtained at Level B Using BCP
Properties for the Highest Ranked Bond C1-O3 According to the VIP Plot

N compd exptl pKa calcd pKa FC-O ∇2FC-O εC-O KC-O

1 acetic acid 4.76 4.18 0.4023 -0.3520 0.0300 0.6013
2 bromoacetic acid 2.90 3.04 0.4074 -0.3125 0.0368 0.6148
3 chloroacetic acid 2.82 2.80 0.4080 -0.3090 0.0367 0.6164
4 dichloroacetic acid 1.26 1.57 0.4054 -0.3403 0.0441 0.6104
5 trichloroacetic acid 0.63 0.45 0.4102 -0.3013 0.0488 0.6238
6 trifluoroacetic acid 0.23 0.61 0.4103 -0.2966 0.0505 0.6209
7 acrylic acid 4.25 4.65 0.4000 -0.4090 0.0186 0.5937
8 formic acid 3.55 3.18 0.4029 -0.2609 0.0296 0.6049
9 mercaptoacetic acid 3.67 3.43 0.4040 -0.3450 0.0319 0.6054

10 propionic acid 4.87 4.50 0.4011 -0.3418 0.0206 0.5978
11 2-chloropropionic acid 2.88 2.92 0.4017 -0.3487 0.0263 0.6000
12 3-chloropropionic acid 4.00 4.03 0.4011 -0.3628 0.0231 0.5976
13 methacrylic acid 4.66 4.79 0.3985 -0.4209 0.0185 0.5903
14 butyric acid 4.82 4.56 0.4008 -0.3471 0.0208 0.5969
15 vinylacetic acid 4.34 4.36 0.4011 -0.3495 0.0188 0.5975
16 crotonic acid 4.70 5.08 0.3988 -0.4302 0.0154 0.5902
17 isocrotonic acid 4.41 4.36 0.3994 -0.4018 0.0297 0.5930
18 isobutyric acid 4.86 4.83 0.4000 -0.3456 0.0190 0.5949
19 valeric acid 4.86 4.56 0.4009 -0.3473 0.0208 0.5969
20 isovaleric acid 4.78 4.76 0.3999 -0.3612 0.0179 0.5941
21 pivalic acid 5.05 5.02 0.3991 -0.3515 0.0182 0.5928
22 cyanoacetic acid 2.45 2.48 0.4077 -0.3280 0.0404 0.6160
23 2-bromobutyric acid 2.55 3.14 0.4007 -0.3563 0.0242 0.5971
24 glycolic acid 3.83 3.34 0.4077 -0.2921 0.0345 0.6158
25 lactic acid 3.86 4.83 0.3971 -0.3649 0.0026 0.5868
26 2-hydroxybutyric acid 3.68 3.38 0.3984 -0.3855 0.0090 0.5891
27 oxalic acid 1.27 0.65 0.4076 -0.2969 0.0425 0.6148
28 malonic acid 2.83 3.08 0.4075 -0.3317 0.0419 0.6146
29 succinic acid 4.20 4.35 0.4005 -0.3624 0.0206 0.5957
30 maleic acid 1.94 1.65 0.3970 -0.4553 0.0170 0.5878
31 glutaric acid 4.35 4.30 0.4017 -0.3455 0.0233 0.5991
32 2-chlorobutyric acid 2.84 2.98 0.4012 -0.3556 0.0255 0.5987
33 3-chlorobutyric acid 4.06 3.36 0.4004 -0.3711 0.0283 0.5966
34 4-chlorobutyric acid 4.52 4.13 0.4018 -0.3481 0.0239 0.5994
35 nitroacetic acid 1.68 1.95 0.4116 -0.3206 0.0527 0.6256
36 difluoroacetic acid 1.24 1.89 0.4054 -0.3179 0.0372 0.6072
37 fluoroacetic acid 2.59 3.12 0.4075 -0.3055 0.0333 0.6148
38 2-bromopropionic acid 2.97 3.09 0.4011 -0.3496 0.0248 0.5984
39 3-bromopropionic acid 3.99 4.14 0.4009 -0.3615 0.0222 0.5970
40 4-bromobutyric acid 4.58 4.18 0.4017 -0.3477 0.0237 0.5992

R-C(dO)-O-H T R-C+(-O-)-O-H T

R-C(-O-)dO+-H h R-C(dO)-O- + H+ T

R-C(-O-)dO + H+

FIGURE 1. Numbering scheme of the common skeleton of
the carboxylic acids.
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of AM1 or other semiempirical analyses.9 In that work,
Citra obtained a three-term equation for aliphatic car-
boxylic acids yielding an r2 value of 0.84 and one for
aromatic carboxylic acids yielding an r2 value of 0.89. The
strongest model was obtained at level B with the use of
BCP properties as descriptors yielding two components
with an r2 value of 0.920 and a q2 value of 0.891. Figure
2 illustrates the quality of this prediction.

We clearly see from the VIP plot in Figure 3 that the
ellipticity of the C1-O3 bond is the most important
descriptor in building the PLS model followed by the

ellipticity of C1dO2. The ellipticity describes the ovality
of a bond and reflects its π character,19 which means our
top two descriptors are consistent with the chemistry that
occurs during the dissociation process. The resonance
structures in the scheme above show that the fluctuations
of π character at C1dO2 and C1-O3 would have a
significant presence during the deprotonation process and
as such are reflected in the PLS model.

The results indicate that QTMS can be employed to
estimate the pKa of aliphatic carboxylic acids with good
accuracy compared to experimental values or values
predicted by LFER and semiempirical methods. The
value of our descriptors is apparent when QTMS results
are compared with other more established electronic
descriptors such as EHOMO, ELUMO, electronegativity, and
partial charges.

In their study of the same carboxylic acid set, Eriksson
et al.55 reported a principal component analysis (PCA)
that showed a 2D plot of the first and second loading
vector for a set of nine classical descriptors, such as
melting point, molecular weight, density, etc. In that
loading plot, the descriptors log P and pKa lay on the
extremities of the two orthogonal loading vectors (or
axes). From this, one can assume that the two descriptors
explain a completely dissimilar aspect of the chemistry
behind the observed activity. Second, as QTMS succeeds
in modeling pKa on the basis of its reliability in capturing
electronic effects, it inevitably cannot explain observed
activities that involve a log P effect. This latter assertion
is consistent with the many other studies our group has
carried out over the years and indicates the position of
QTMS within the larger arena that is QSAR. Given the
success41 of QTMS in predicting the Hammett σ of
polysubstituted benzoic acids, future work on the predic-
tion of pKa values of polysubstituted aliphatic carboxylic
acids may prove equally successful.

3.2. Anilines. Table 3 shows the measured pKa values
for the 36 anilines obtained from a recent study by Gross
et al.21 The pKa here refers to the conjugate acids, but it
is used as a measure of the amine’s basicity since pKa +
pKb ) pKw, where Kw is the ionization constant of water.
The protonation of aniline is outlined by the following
equation:

All atoms provided of a numerical label were included
in the common skeleton, which encompasses 14 bonds.
A summary of the PLS analyses at the four levels of
theory are shown in Table 4. Again, two QSAR models
were constructed at each level of theory, using BCP
descriptors in one and equilibrium bond lengths in the
other. We obtain progressively better correlation statis-
tics with increasing level, and ultimately the best model
is obtained when electron correlation is incorporated, at
level E. Figure 4 shows predicted versus observed pKa

values for this best model, maintaining quality over
almost six pKa units. The benefit of using descriptors at
DFT level more than outweighs the computationally
expense required. Also, for anilines, BCP models always
outperform the bond length models, both in terms of r2

TABLE 2. Summary of PLS Analyses for the Carboxylic
Acids

level descriptors LVa r2 q2

A bond lengths 2 0.787 0.598
B bond lengths 2 0.885 0.883

BCP properties 2 0.920 0.891
C bond lengths 2 0.879 0.871

BCP properties 2 0.918 0.819
E bond lengths 2 0.853 0.839

BCP properties 2 0.891 0.839
a Number of latent variables.

FIGURE 2. Observed versus predicted pKa values for the set
of 40 carboxylic acids at level B with BCP properties, using
the carboxylic acid group (O2dC1)-O3-H4 as the common
skeleton.

FIGURE 3. VIP plot for the complete set of 40 carboxylic acids
at level B with BCP properties using the carboxyl group (O2d
C1)-O3-H4 as the common skeleton.
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and q2, without exceptions. Again, we improve on the
results of Gross et al.21 In their study, Hammett con-
stants yielded an r2 value of 0.940 and an r2 of 0.949 when
using the minimum ionization energy. No q2 was re-
ported.

From the VIP plot shown in Figure 5, we see that the
most important variables in explaining the activity are
those that belong to the NH2 group, that is N1-H2 and
N1-H3. This is expected since this functional group is
the center of activity. Although the descriptor “Lap0401”
(Figure 5) appears with a lower VIP value than “Lap0301”
and “Lap0201”, we believe that a plausible link with
aniline basicity can be suggested.

The Laplacian, ∇2F, gauges charge concentration and
depletion and operates as a simple measure for covalency
versus ionicity. If ∇2F < 0 at a BCP, the bond is said to
represent a shared interaction, and if ∇2F > 0 it is a
closed-shell interaction. Ionic bonds reside under the
latter category while covalent ones under the former. In
our QSAR we cannot use the Laplacian to distinguish
both extremes of bond types since Table 3 lists only

negative values of ∇2F at the BCP of the relevant C4-N1

bond in all anilines. However, in the current work, we
can say that the more positive the Laplacian (i.e., the
smaller its absolute value) the more the covalent bond
has a tendency to segregate electron density toward the
bonded nuclei, a feature pointing toward ionic bonds in
the limit. How can we use this interpretation of the
Laplacian in the context of basicity?

It is well-known that the partially pyramidal amino
group can conjugate with the phenyl π-system. This
delocalization renders the lone-pair less available for
protonation. Hence, conjugation of nitrogen with the

TABLE 3. Aniline Substituents and Their Observed and Predicted pKa Values Obtained at Level E Using BCP
Properties for the Highest Ranked Bond C4-N1 According to the PC VIP Plot

N substituent exptl pKa calcd pKa FC-N ∇2FC-N εC-N KC-N

1 H 4.58 4.52 0.2987 -0.8987 0.0983 0.3577
2 m-amino 4.88 5.02 0.2985 -0.8995 0.0946 0.3578
3 m-bromo 3.51 3.38 0.3017 -0.9155 0.1031 0.3643
4 m-chloro 3.34 3.39 0.3017 -0.9153 0.1031 0.3642
5 m-cyano 2.76 3.11 0.3037 -0.9262 0.1061 0.3690
6 m-fluoro 3.59 3.37 0.3017 -0.9166 0.1033 0.3645
7 m-hydroxy 4.17 3.97 0.3004 -0.9106 0.0983 0.3621
8 m-methoxy 4.2 4.17 0.2994 -0.9042 0.0974 0.3592
9 m-methyl 4.69 4.74 0.2983 -0.8977 0.0968 0.3573

10 m-nitro 2.5 2.37 0.3043 -0.9290 0.1099 0.3697
11 p-amino 6.08 5.66 0.2922 -0.8520 0.1051 0.3377
12 p-bromo 3.91 3.93 0.3006 -0.9079 0.1035 0.3613
13 p-chloro 3.98 3.96 0.3001 -0.9045 0.1039 0.3598
14 p-cyano 1.74 2.02 0.3076 -0.9565 0.1046 0.3857
15 p-fluoro 4.65 4.47 0.2972 -0.8834 0.1049 0.3501
16 p-hydroxy 5.5 5.32 0.2939 -0.8620 0.1053 0.3414
17 p-methoxy 5.29 5.52 0.2939 -0.8630 0.1042 0.3420
18 p-methyl 5.12 4.99 0.2968 -0.8858 0.0994 0.3521
19 p-nitro 1.02 1.21 0.3106 -0.9767 0.1047 0.3974
20 3,4-dimethyl 5.17 5.19 0.2966 -0.8855 0.0976 0.3520
21 3-amino-4-hyroxy 5.7 5.91 0.2938 -0.8638 0.1008 0.3416
22 3-bromo-4-methoxy 4.08 4.55 0.2962 -0.8749 0.1078 0.3463
23 3-bromo-4-methyl 3.98 3.81 0.2997 -0.9016 0.1037 0.3581
24 3-chloro-4-methyl 4.05 3.87 0.2997 -0.9013 0.1037 0.3579
25 3-methyl-4-nitro 1.5 1.51 0.3101 -0.9743 0.1011 0.3965
26 4-chloro-3-nitro 1.9 2.11 0.3053 -0.9334 0.1136 0.3718
27 4-methyl-3-nitro 2.96 2.87 0.3026 -0.9176 0.1095 0.3646
28 3,5-dibromo 2.34 2.08 0.3044 -0.9298 0.1073 0.3703
29 3,5-dimethoxy 3.82 4.08 0.2991 -0.9021 0.0965 0.3577
30 3,5-dimethyl 4.91 5.01 0.2979 -0.8954 0.0950 0.3563
31 3-chloro-5-methoxy 3.1 3.32 0.3013 -0.9127 0.1018 0.3625
32 3-methoxy-5-nitro 2.11 1.92 0.3045 -0.9302 0.1086 0.3694
33 3,5-dibromo-4-hydroxy 3.2 3.27 0.2985 -0.8847 0.1125 0.3498
34 3,5-dibromo-4-methoxy 2.98 2.68 0.3017 -0.9095 0.1090 0.3608
35 3,5-dibromo-4-methyl 2.87 2.71 0.3023 -0.9155 0.1069 0.3638
36 3,5-dimethyl-4-nitro 2.59 2.74 0.3069 -0.9537 0.0995 0.3846

TABLE 4. Summary of PLS Analyses for the Anilines

level descriptor LV r2 q2

A bond lengths 2 0.857 0.758
B bond lengths 2 0.917 0.862

BCP properties 1 0.940 0.915
C bond lengths 2 0.916 0.882

BCP properties 3 0.968 0.925
E bond lengths 2 0.954 0.921

BCP properties 2 0.974 0.953

FIGURE 4. Observed versus predicted pKa for the set of 36
anilines at level E with BCP properties including all 14 bonds
of the common skeleton.
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phenyl ring decreases the basicity of the amino group in
anilines. The C4-N1 bond, connecting the amino group
with the phenyl group, is an appropriate monitor of the
degree of delocalization between the amino group and the
phenyl ring. Now we take an extreme entry of Table 3
that illustrates how the Laplacian can be invoked to
measure this delocalization. p-Aminoaniline has a high
pKa value (6.08) and, hence, a lower pKb value compared
with aniline, indicating higher basic character of the NH2

group. Therefore, we deduce the lone pair to be more
“free” to accept the proton, since it conjugates less with
the phenyl ring. This would infer that density is more
segregated onto the carbon (C4) and the nitrogen (N1),
which in turn infers a more positive Laplacian. Indeed,
the value of -0.8520 listed in Table 3 is one of the most
positive (i.e., least negative or smallest absolute value)
values found. The same reasoning can be applied to
p-nitroaniline, at the other extreme, having a lower pKa

(1.02). Here, the very negative Laplacian value indicates
substantial sharing in the bond, hence conjugation from
phenyl across to the amino group, which reduces the
basicity (since the lone pair is less available to accept
the proton).

When we invoke the second chemometric step within
QTMS, which involves a reduction in dimensionality of
descriptor space via PCA, we find that the active region
of the aniline molecules is indeed recovered, as shown
in Figure 6. The decision to introduce the PCA here, and
later for the phenol set, is to retrieve information on
important bonds within the molecule that are responsible
for the observed property. Unlike with the acids where
the common skeleton was small and centered on the
functional group (COOH), we now have a larger common
skeleton. This illustrates the usefulness of QTMS in
locating key regions in a larger molecule. In other words,
even if the common skeleton contains 14 bonds, only
three bonds predominantly explain the activity.

Principal components in Figure 6 are ranked according
to their importance. The three highest ranked PCs
correspond to the “active-region” within the anilines (i.e.,
the -NH2 fragment) and exhibit a clear lead over those
PCs that represent the remainder of the molecule. As
with the work carried out by Gross et al., the set of
anilines was split into para and meta-substituted com-

pounds. Such a division is not necessary in QTMS but if
carried out we obtain equally robust results, that is, an
r2 value of 0.970 and q2 value of 0.838 for monosubsti-
tuted anilines and r2 ) 0.983 and q2 ) 0.927 for the para-
substituted anilines.

3.3. Phenols. Table 5 shows the measured pKa values
for the 19 phenols taken from ref 21.21 The numbering
scheme used to identify the location of descriptors in the
deprotonation of phenol follows:

A summary of the PLS analyses at the four levels is
shown in Table 6, three levels (B, C, and E) being treated
with and without BCP properties, as before. Only for
levels C and E does the addition of BCP properties

FIGURE 5. VIP plot for the complete set of 36 anilines at
level E with BCP properties.

FIGURE 6. VIP plot of Principal Components (composed of
BCPs and bond lengths) for each bond for the complete set of
36 anilines at level E (numbers refer to bonds in common
skeleton).

TABLE 5. Phenol Substituents and Their Observed and
Predicted pKa Values Obtained at Level E Using BCP
Properties and QCT Descriptors for the Highest Ranked
Bond O2-H3 According to the PC VIP Plot

N compd pKa FO-H ∇2FO-H εO-H KO-H

1 H 9.98 0.3623 -2.4006 0.0225 0.6741
2 m-amino 9.87 0.3628 -2.4003 0.0226 0.6744
3 m-bromo 9.03 0.3618 -2.4078 0.0220 0.6750
4 m-chloro 9.02 0.3618 -2.4070 0.0220 0.6749
5 m-cyano 8.61 0.3613 -2.4115 0.0217 0.6754
6 m-fluoro 9.28 0.3619 -2.4068 0.0221 0.6749
7 m-hydroxy 9.44 0.3625 -2.4003 0.0225 0.6742
8 m-methoxy 9.65 0.3625 -2.3974 0.0226 0.6736
9 m-methyl 10.08 0.3623 -2.3986 0.0226 0.6737

10 m-nitro 8.4 0.3612 -2.4161 0.0215 0.6762
11 p-amino 10.3 0.3631 -2.3980 0.0235 0.6744
12 p-bromo 9.36 0.3620 -2.4061 0.0222 0.6749
13 p-chloro 9.38 0.3620 -2.4053 0.0223 0.6748
14 p-cyano 7.95 0.3613 -2.4137 0.0211 0.6757
15 p-fluoro 9.95 0.3624 -2.4051 0.0227 0.6751
16 p-hydroxy 9.96 0.3626 -2.3976 0.0232 0.6739
17 p-methoxy 10.21 0.3625 -2.3958 0.0232 0.6734
18 p-methyl 10.14 0.3624 -2.3983 0.0228 0.6737
19 p-nitro 7.15 0.3612 -2.4182 0.0207 0.6764
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improve the correlation statistics. The best model is
obtained when electron correlation is incorporated, i.e.,
level E with BCP properties. This again justifies the use
of a higher level of theory, which posesas the rate-limiting
step in the QTMS analysis. Figure 7 compares the
observed and predicted pKa over more than 3 pKa units.

Comparing these results with those obtained by Gross
et al.21 when using the Hammett constants and other
quantum chemical parameters we find QTMS producing
stronger QSARs. They found that the Hammett constants
produced a correlation coefficient r2 of 0.816 for the pKa

values of these phenols, which was outperformed by all
their quantum chemical descriptors, Their best model
yielded an r2 of 0.911 when using the phenoxide oxygen
charge.

Figure 8 shows the VIP plot, for the best model, of the
original (i.e., uncompressed) variables. As with the
anilines and carboxylic acids, we see that the VIP plot
corresponds to the chemistry one would expect in the
deprotonation of a phenol. The O2-H3 bond is readily
broken upon deprotonation, and the resulting anion is
stabilized through resonance. The top four descriptors
in the VIP plot illustrate this, thus highlighting the active
center in this reaction, the added benefit of QTMS over
other 2-D QSAR methods whereby we can “magnify”
activities of important bonds.

Figure 9 shows the VIP plot of the compressed descrip-
tors or PCs. Reassuringly, the PCs of the C1-O2 and O2-
H3 bonds tower above the others, with the exception of
the C5-H10.

A split of the phenol set into para and meta-substituted
compounds further illustrated the strength of QTMS
descriptors by yielding models of r2 ) 0.970 and q2 )
0.838 (meta) and r2 ) 0.983 and q2 ) 0.927 (para).

Conclusion

We showed that QTMS delivers strong QSAR models
for a set of aliphatic carboxylic acids, anilines, and
phenols in estimating their pKa values. These results
improve on previous attempts at modeling pKa by others
and highlight the increasing use of quantum chemically
derived descriptors over empirical parameters such as
the Hammett and semiempirically obtained descriptors.
In analyzing the common skeleton, we take advantage
of QTMS’s capability to “highlight” the important bonds
that are responsible for the observed property. We do not
bias the analysis in only picking certain bonds to build
our QSAR but allow the data to provide us with a
chemical insight. This can be significant for systems
where modes of action are not known. QTMS may be
applied to compounds that are not amenable to analysis
via Hammett parameters such as when values are not
obtainable for the fragments under observation. Even
though electron correlation was necessary in some cases
to produce good models, such as with anilines and
phenols, a QTMS analysis of large (industrially relevant)
molecules is perfectly feasible from a computational point
of view. It is gratifying to realize that this computational
investment injects genuine quantum chemical informa-
tion into a QSAR and hence increases the probability that

FIGURE 7. Observed versus predicted rate constant (pKa)
for the set of 19 phenols at level E with BCP properties of all
13 bonds of the common skeleton.

FIGURE 8. VIP plot for the set of 19 phenols at level E with
BCP properties.

TABLE 6. Summary of PLS Analyses for the Phenols

level descriptor LV r2 q2

A bond lengths 2 0.890 0.825
B bond lengths 2 0.938 0.831

BCP properties 2 0.909 0.826
C bond lengths 1 0.911 0.856

BCP properties 1 0.930 0.863
E bond lengths 2 0.894 0.832

BCP properties 2 0.952 0.884

FIGURE 9. VIP plot of principal components (composed of
BCPs and bond lengths) for each bond of the set of 19 phenols
at level E (numbers refer to bond in common skeleton).
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the activity is explained for reasons more closely linked
to exact solutions of the Schrödinger equation.
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